Abstract:
Face recognition is the most active research topics in machine vision because of its highly secured demands. The fusion of multiple features can enhance the accuracy of face recognition systems instead of using only one type of feature. However, this leads to increase the storage and processing time. In this work, we apply feature fusion by using Canonical Correlation Analysis to concatenate two different feature sources for coding a facial image. Three popular descriptors (LBP, HOG, GIST) have been investigated for extracting facial features based on block division.
• Demo Video
• Complete project
• Full project report
• Source code
• Complete project support by online
• Life time access
• Execution Guidelines
• Immediate (Download)
Software Requirements:
1. Python 3.7 and Above
2. NumPy
3. OpenCV
4. Scikit-learn
5. TensorFlow
6. keras
Hardware Requirements:
1. PC or Laptop
2. 500GB HDD with 1 GB above RAM
3. Keyboard and mouse
4. Basic Graphis card
1. Immediate Download Online
Only logged-in users can leave a review.