Abstract:
Social networks have been developed as a great point for its users to communicate with their interested friends and share their opinions, photos, and videos refecting their moods, feelings and sentiments. This creates an opportunity to analyze social network data for user’s feelings and sentiments to investigate their moods and attitudes when they are communicating via these online tools. Although diagnosis of depression using social networks data has picked an established position globally, there are several dimensions that are yet to be detected. In this study, we aim to perform depression analysis on Facebook data collected from an online public source. To investigate the effect of depression detection, we propose machine learning technique as an efficient and scalable method. We report an implementation of the proposed method. We have evaluated the efficiency of our proposed method using a set of various psycholinguistic features. We show that our proposed method can signifcantly improve the accuracy and classification error rate. In addition, the result shows that in different experiments Decision Tree (DT) gives the highest accuracy than other ML approaches to find the depression. Machine learning techniques identify high quality solutions of mental health problems among Facebook users.
Objectives:
The depression detection in social media using machine learning. To detect the depression in social media in all social media.
• Demo Video
• Complete project
• Full project report
• Source code
• Complete project support by online
• Life time access
• Execution Guidelines
• Immediate (Download)
Software Requirements:
1. Python 3.7 and Above
2. NumPy
3. OpenCV
4. Scikit-learn
5. TensorFlow
6. Keras
Hardware Requirements:
1. PC or Laptop
2. 500GB HDD with 1 GB above RAM
3. Keyboard and mouse
4. Basic Graphis card
1. Immediate Download Online
Only logged-in users can leave a review.